skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Foltz, Gregory_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Prediction of the rapid intensification (RI) of tropical cyclones (TCs) is crucial for improving disaster preparedness against storm hazards. These events can cause extensive damage to coastal areas if occurring close to landfall. Available models struggle to provide accurate RI estimates due to the complexity of underlying physical mechanisms. This study provides new insights into the prediction of a subset of rapidly intensifying TCs influenced by prolonged ocean warming events known as marine heatwaves (MHWs). MHWs could provide sufficient energy to supercharge TCs. Preconditioning by MHW led to RI of recent destructive TCs, Otis (2023), Doksuri (2023), and Ian (2022), with economic losses exceeding $150 billion. Here, we analyze the TC best track and sea surface temperature data from 1981 to 2023 to identify hotspot regions for compound events, where MHWs and RI of tropical cyclones occur concurrently or in succession. Building upon this, we propose an ensemble machine learning model for RI forecasting based on storm and MHW characteristics. This approach is particularly valuable as RI forecast errors are typically largest in favorable environments, such as those created by MHWs. Our study offers insight into predicting MHW TCs, which have been shown to be stronger TCs with potentially higher destructive power. Here, we show that using MHW predictors instead of the conventional method of using sea surface temperature reduces the false alarm rate by 30%. Overall, our findings contribute to coastal hazard risk awareness amidst unprecedented climate warming causing more frequent MHWs. 
    more » « less